人工智能技术,人工智能的技术基础是什么?,人工智能的基础包括

原创 我爱代挂网  2021-06-22 18:10:09  阅读 55 次 评论 0 条
摘要:

人工智能是一门研究用计算机来模仿和执行人脑的某些智力功能的交叉学科,所以人工智能问题的求解也是以知识为基础的人工智能技术。 知识图谱 如何从现实世界中获取知识、如何将已获得的知识以计算机内部代码的形式加以合理的表示以便于存储,以及如何运用这些知识进行推理以解决实际的问题,即知识的获取、知识的表示和运用知识进行推理是人工智能学科要研究的3个主要问题。 在人们的日常生活及社会活动中,“知识”是常用的一个术语。例如,人们常说“我们要掌握现代科学知识”,“掌握的知识越多,你的机会就越多”等。

人工智能是一门研究用计算机来模仿和执行人脑的某些智力功能的交叉学科,所以人工智能问题的求解也是以知识为基础的人工智能技术。

人工智能技术,人工智能的技术基础是什么?,人工智能的基础包括

知识图谱

人工智能技术,人工智能的技术基础是什么?,人工智能的基础包括

如何从现实世界中获取知识、如何将已获得的知识以计算机内部代码的形式加以合理的表示以便于存储,以及如何运用这些知识进行推理以解决实际的问题,即知识的获取、知识的表示和运用知识进行推理是人工智能学科要研究的3个主要问题。

人工智能技术,人工智能的技术基础是什么?,人工智能的基础包括

在人们的日常生活及社会活动中,“知识”是常用的一个术语。例如,人们常说“我们要掌握现代科学知识”,“掌握的知识越多,你的机会就越多”等。人们所涉及的知识也是十分广泛的,例如,有的知识是多数人所熟悉的普通知识,而有的知识只是有关专家才掌握的专门领域知识。那么,到底什么是知识?知识有哪些特性?它与通常所说的信息有什么区别和联系?

现实世界中每时每刻都产生着大量的信息,但信息是需要用一定的形式表示出来才能被记载和传递的。尤其是使用计算机来进行信息的存储及处理时,更需要用一组符号及其组合进行表示。像这样用一组符号及其组合表示的信息称为数据。

数据与信息是两个密切相关的概念。数据是记录信息的符号,是信息的载体和表示。信息是对数据的解释,是数据在特定场合下的具体含义。只有把两者密切地结合起来,才能实现对现实世界中某一具体事物的描述。

三者关系图

另外,数据和信息又是两个不同的概念,相同的数据在不同的环境下表示不同的含义,蕴涵不同的信息。比如,“100”是一个数据,它可能表示“100元钱”,也可表示“100个人”,若对于学生的考试成绩来说,可能表示“100分”。同样,相同的信息也可以用不同的数据表示出来。比如,地下工作者为了传达情报信息,可以用一首诗词的每一句的第一个字组成一句话,或诗的斜对角线上的字组成的一句话来传达信息,也可能会用一个代码或数字来表示同一信息。

正如上述,现实生活中,信息是要以数据的形式来表达和传递的,数据中蕴涵着信息,然而,并不是所有的数据中都蕴涵着信息,而是只有那些有格式的数据才有意义。对数据中的信息的理解也是主观的、因人而异的,是以增加知识为目的的。

比如,你看到0571-8888888这样的数字,你可能会根据自己已有的知识猜测到它是一个电话号码,但不知道它是哪个城市的电话号码,但如果你通过一些方法确定0571是杭州市的区号后,以后再碰到相同格式的数据时,你就会知道它代表杭州市的一个电话号码,实际上你的知识也就增加了。不同格式的数据蕴涵的信息量也不一样,比如,图像数据所蕴涵的信息量就大,而文本数据所蕴涵的信息量就少。

数据处理

信息在人类生活中占有十分重要的地位,但是,只有把有关的信息关联到一起的时候,它才有实际的意义。一般把有关信息关联在一起所形成的信息结构称为知识。知识是人们在长期的生活及社会实践、科学研究及实验中积累起来的对客观世界的认识与经验,人们把实践中获得的信息关联在一起,就获得了知识。

终上所述,知识、信息和数据是3个层次的概念。有格式的数据经过处理、解释过程会形成信息,而把有关的信息关联再一起,经过处理就形成了知识。知识是用信息表达的,信息则是用数据表达的,这种层次不仅反映了数据、信息和知识的因果关系,也反映了它们不同的抽象程度。人类在社会实践过程中,其主要的智能活动就是获取知识,并运用知识解决生活中遇到的各种问题。

人工智能技术是什么专业?

从广义上理解是计算机专业,而狭义上就涉及很多了。

国家新一代人工智能战略咨询委员会和高等教育出版社于2018年3月成立“新一代人工智能系列教材”编委会,由中国工程院院士潘云鹤担任编委会主任,今年将出版《人工智能:模型与算法》《可视化导论》《智能产品设计》《自然语言处理》四本教材,相关线上课程也正在录制中。

但从人工智能包含的技术及落地场景来说,还有很多,比如计算机视觉(卷积神经网络)、生成式对抗网络(机器学习、深度学习、强化学习)、知识图谱几大项。

目前国内一些985、211大学都已经开设了人工智能专业课程,从基础的算法模型,到理论实践都有。

但是目前人工智能仍属于新兴产业,课程体系尚未成熟,市场上还有些教育机构及科技企业在做自己的培训课程,而这些课程大多是以实践为主,假设你已经有了基础的计算机编程及算法知识。

如果没有学习过任何计算机语言及人工智能知识,建议先从基础学习,包括:数学基础(微积分、线性代数、概率、信息论等),机器学习算法,机器学习分类。入门时最关键的是要打好基础,尤其是算法和模型,这两样在人工智能领域是基石,基石不稳,必将坍塌。

此外,还要深入了解一些框架:

谷歌的Tensorflow:

TensorFlow是一个开源软件库,可以描述一幅数据计算的数据流图(data flow graph),用于各种感知和语言理解任务的机器学习。当前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索。

Facebook 的 PyTorch:

与TensorFlow抗衡的学习框架,由 Facebook 的团队开发,并于 2017 年在 GitHub 上开源。

TensorFlow 和PyTorch的关键差异是它们执行代码的方式。这两个框架都基于基础数据类型张量(tensor)而工作。TensorFlow更像是一种语言,而PyTorch与Python结合的更紧密。

TensorFlow 是一种非常强大和成熟的深度学习库,具有很强的可视化功能和多个用于高级模型开发的选项。它有面向生产部署的选项,并且支持移动平台。另一方面,PyTorch 框架还很年轻,拥有更强的社区动员,而且它对 Python 友好。

所以如果你想更快速地开发和构建 AI 相关产品,TensorFlow 是很好的选择。建议研究型开发者使用 PyTorch,因为它支持快速和动态的训练。

两者还有很多差异,各有优势,可以在实践中慢慢摸索。

需要掌握的语言:

Python被认为是所有AI开发语言列表中的第一位。Python相对简单易学,可以很容易地学习。此外python有很多AI相关的库,便于在机器学习等方面快速上手。

C++已经非常成熟了,而且是最快的计算机语言,如果你的项目开发时间有限,那么C++是很好的选择,它提供更快的执行时间和更快的响应时间,老司机优势显现无疑,游戏开发大部分都是用C++语言。

C ++适用于机器学习和神经网络。

Java也是计算机语言的老司机之一,虽然褒贬不一,但是在各种项目的开发中,Java都是常用语言之一,它不仅适用于NLP(自然语言处理)和搜索算法,还适用于神经网络。

Lisp:

相当古老的语言,差不多是在人工智能火起来之后才又回到众人眼中。有人认为Lisp是最好的人工智能编程语言,因为它为开发人员提供了自由。在人工智能中使用Lisp,因其灵活性可以快速进行原型设计和实验,当然这也反过来促进Lisp在AI开发中的发展,例如,Lisp有一个独特的宏系统,有助于开发和实现不同级别的智能。

但同时也因为它的古老,掌握的人不是大多数。

本文地址:https://www.bjertong999.com/19436.html
版权声明:本文为原创文章,版权归 我爱代挂网 所有,欢迎分享本文,转载请保留出处!

评论已关闭!